ACHARYA ## **ACHARYA INSTITUTE OF TECHNOLOGY** Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT) #### DEPARTMENT OF BIO TECHNOLOGY #### **2022 SCHEME** | Course Name | Course
Code | CO. No. | Course Outcomes | |------------------------------|----------------|---------|---| | | | CO1 | Explain the various structural-functional bio-molecules within a cell | | | | CO2 | Identify the enzymes that find applications in industries | | CELL BIOLOGY
AND GENETICS | BBT301 | CO3 | Categorize the exocytosis and endocytosis pathways with examples | | AND GENETICS | | CO4 | Relate the principle of Mendelian genetics and gene interactions, their inheritance and expressions in nature. | | | | CO5 | Analysis of genetically inherited disorders with pedigree analysis and conceptual numericals. | | | | CO1 | 1.Summarize the concepts of fluid dynamics, solid liquid separation. | | | | CO2 | 2. Describe principles in characterizing the flow of fluid and particle size | | | | CO3 | 3.Implement the concepts of heat transfer through the material and fluids in contact | | LINUT | BBT302 | CO4 | 4. Predict mass transfer rates and co efficient in the binary mixtures based on diffusion | | UNIT
OPERATIONS
LAB | | CO5 | Compare the principles of extraction, distillation and drying | | LAD | | CO6 | 6.Implement the McCabe Thiele's method in the design of distillation column | | | | CO7 | 7.Conduct experiments on fluid, solid – liquid separation process, heat – mass transfer and interpret the data | | | | CO8 | 8. Organize the applications of fluid mechanics, solid-liquid separation operations, heat and mass transfer by oral presentations and report submission . | | | | CO1 | Explain the structures, functions and interactions of bio-
molecules along with basics of biochemical reactions. | | BIOCHEMISTRY
+ LAB | BBT303 | CO2 | Comprehend the biological pathways with energy production/consumption in vivo. | | | | CO3 | Explicit the concepts of metabolic pathways, regulation and disorders of carbohydrates. | | | | CO4 | Explicit the concepts of metabolic pathways, regulation and disorders of lipids. | | | | CO5 | Explicit the concepts of metabolic pathways, regulation and disorders of amino acids and nucleic acids. | | | | CO6 | Illustrate basic biochemical experiments | | | | CO7 | Qualitatively/quantitatively analyze the biomolecule | Acharya Dr. Sarvepalli Radhakrishnan Road, Soladevanahalli, Acharya P. O., Bangalore-560 107 https://ait.ac.in Ph.: 080 5555 5555 | | | | present in the given unknown | |-------------------------------------|-----------------|-----|--| | | | CO1 | present in the given unknown. Describe microbes and its role in environment | | | | | Apply the principles microscopy and imaging | | | | CO2 | techniques in microbiology | | | | ~~ | Illustrate the metabolic pathways of microbes during | | MICROBIOLOGY | BBT304 | CO3 | growth and respiration | | | | CO4 | Describe the disease causing bacteria and its mode of | | | | CO4 | infection | | | | CO5 | Analyse the role of beneficial bacteria in environmental | | | | 003 | and industrial microbiology | | | | CO1 | Outline the essentials of bio-lab management for an | | | | | organization / bioprocess | | | | CO2 | 2.cIdentify the levels of biosafety levels and risk | | BIO-LAB | | | assessment | | MANAGEMENT | BBT358A | CO3 | 3.Implement the risk assessment methodologies for the idenfied biosafety levels | | AND RISK | DD 1336A | | Demonstrate the range of risk management challenges | | ASSESSMENT | | CO4 | for the product / process | | | | | Recognize the importance of ethical, legal, and social | | | | CO5 | implications of health privacy and policy laws for risk | | | | | reduction | | | | CO1 | Demonstrate the techniques to culture microbial cells | | MICROBIOLOGY | BBT305 | CO2 | Apply the principles of microbiology to identify the | | LAB | | | quality of a given sample | | | | CO3 | Conduct and Analyse the biochemical assay to identify | | | | | the bacteria and its organelle | | | | CO1 | Summarize the concepts and importance of central dogma of molecular biology and tools of genetic | | | | COI | engineering with focus on their applications. | | | | | Sketch the mechanism of prokaryotic and eukaryotic | | MOLECULAR | | CO2 | replication, transcription and translation and mode of | | BIOLOGY &
GENETIC | BBT401 | | action of enzymes in genetic engineering | | ENGINEERING | | | Correlate the genetic information flow pathway in | | ENGINEERING | | CO3 | biological systems in replication, transcription, | | | | | translation, and its proteomics. | | | | CO4 | Differentiate between the physical, chemical, and | | | | | biological methods of gene transfer | | BIOSTATISTICS
AND TOOLS +
LAB | | CO1 | Gather data, present appropriately and perform univariate, bi-variate analysis of data. | | | | | In order to address engineering challenges, define and | | | BBT402 | CO2 | use probability distributions like the Poisson, normal, | | | | | and binomial. | | | | CO3 | Recognize the fundamentals of the several study designs | | | | | that are employed in epidemiological research and | | | | | discuss the benefits and drawbacks of each. | | | | CO4 | To become knowledgeable about developing | | | | 1 | | |-----------------------------------|---------|------|---| | | | | hypotheses, testing them, and using sample data to draw | | | | | conclusions about a population. | | | | CO5 | Apply one -way ANOVA and two-way ANOVA to datasets with multiple factors in the Relevant field. | | | | | Application of experimental design in laboratory | | | | CO6 | experiments. | | | | | Outline the molecular and cellular mechanisms involved | | | | CO1 | in the development and regulation of the immune | | | | COI | response | | | | | Illustrate the cause, challenges and treatment for | | | | CO2 | Immune System Pathologies and Dysfunctions | | | | | Apply the major immunological laboratory techniques | | | | CO3 | and their application to both clinical analysis and | | IMMUNOTECHN | BBT403 | | experimental research | | OLOGY + LAB | 221.00 | GO 1 | Analyze the immunological conditions, disorders and its | | | | CO4 | diagnostics. | | | | | Demonstrate various Immunodiagnostic techniques like | | | | CO5 | agglutination, precipitation and various Ag-Ab reaction | | | | | etc | | | | CO6 | Analyse and Interpret test result of various Ag- | | | | C00 | Abreaction | | | | CO1 | Comprehend the basic genetic engineering and | | | | CO1 | molecular biology techniques in vitro. | | MOLECULAR | | CO2 | Conduct the experiments to isolate/quantify genetic | | BIOLOGY & | | | material from the given source. 2 | | GENETIC | BBTL404 | CO3 | Analyze and interpret the effects of physio-chemical | | ENGINEERING | | | factors/enzymes/ on genetic materials/cells in vitro | | LAB | | GO 4 | Apply the skills of Isolation, identification and | | | | CO4 | quantification of genetic material for genetic | | | | | engineering applications | | | | CO1 | Articulate the structural and functional aspects of | | | | | proteins. | | | | CO2 | Outline the structure and functional aspects of nucleic acids and biomembranes. | | STRUCTURAL | | | Apply the specific analytical tools and techniques for | | BIOLOGY AND | BBT405D | CO3 | identification of biomolecules. | | BIOPHYSICAL | DD1403D | | Analyse the working principle of spectroscopic | | TECHNIQUES | | CO4 | techniques and its applications | | | | | Demonstrate the various electrophoretic and | | | | CO5 | chromatographic techniques used in analyzing the | | | | | biomolecules | | HYDROPONICS,
AQUAPONICS
AND | | | Interdisciplinary applications of Hydro/aero/aquaponics | | | BBT456A | CO1 | in farming with emphasis to revenue | | | | | generation and entrepreneurial process | | | | CO2 | Evaluate the requirements of traditional and innovative | | AEROPONICS | | | farming in terms of resources | | | | | rarining in terms of resources | | | | CO3 | Demonstrate various practices to maintain personal hygiene, cleanliness, and safety at the workplace. | |--------------------|-------------------------|-----|--| | | | CO4 | Lab-scale Design of setting up and maintaining the hydroponic system and plants/ crop | | | | CO1 | To describe cell, its properties, functions and requirements of cells in physiological conditions | | DVOV OGVV FOR | GY FOR
NEERS BBOK407 | CO2 | To articulate the biomolecular requirements of cells in
physiological conditions and emphasizing their
application | | ENGINEERS | | CO3 | Compare the working human organs to known equipments/machineries | | | | CO4 | Relate various technologies on the principles of biomechanics | | | | CO5 | Evaluate the design of bioengineering used in the solution of contemporary problems. | | LIMINEDCAL | | CO1 | Understand oneself in a holistic way | | UNIVERSAL
HUMAN | BUHK408 | CO2 | Apply principles of happiness and harmony to one's various aspects of life | | VALUES
COURSE | | CO3 | Analyse preconditioning and its effects on one's behaviour | # ACHARYA ## **ACHARYA INSTITUTE OF TECHNOLOGY** Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT) #### **2021 SCHEME** | Course Name | Course
Code | CO. | Course Outcomes | |---------------------
----------------|-----|---| | | Odde | CO1 | Understand the concepts of Laplace Transforms, Fourier series, Fourier transforms, Z-transforms, Numerical techniques and Calculus of variations. | | | | CO2 | Demonstrate various physical phenomena using the concepts of Laplace Transforms, Fourier series, Fourier transforms, Z-transforms, Numerical techniques and Calculus of variations. | | MATHEMATICS | 21MAT31 | CO3 | Apply the knowledge of Laplace Transforms, Fourier series, Fourier transforms, Z-transforms, Numerical techniques and Calculus of variations in modelling various physical and engineering phenomena. | | | | CO4 | Relate the concepts of Laplace Transforms, Fourier series, Fourier transforms, Z-transforms, Numerical techniques and Calculus of variations to their respective branches. | | | 21BT32 | CO1 | Understand the classification of fluids, basic equation of fluid flow, flow measuring devices, crushing laws, modes of heat transfer and rate of diffusion | | UNIT | | CO2 | Understand the principles fluid mechanics, mechanical operations, modes of heat transfer, steady-state conduction and convection, working of heat transfer exchanger | | OPERATIONS +
LAB | | CO3 | Apply the equations of fluid based on pressure drop, velocity, mass, and volumetric flow rate in solving problems | | | | CO4 | Apply the equations of crushing laws, heat transfer, diffusivity, and Mc Cabe Thiele's method in solving problems | | | | CO5 | Demonstrate skill in safe operation of the laboratory experiment | | | | CO1 | Explain the fundamentals of biologically important molecules such as structures, functions and interactions. | | BIOCHEMISTRY + | 21DT22 | CO2 | Understand complex biochemical pathways within living cells and the associated metabolic disorders. | | LAB | 21BT33 | CO3 | Comprehend biochemical principles and apply them to biological systems/samples. | | | | CO4 | Perform basic biochemical experiments, analyse, interpret and present the data. | | MICHORIOLOGY | 21BT34 | CO1 | Correlate the structure, function and metabolic pathways of microorganisms. | | MICROBIOLOGY | | CO2 | Apply the principles of microbial culture and identify the appropriate technique used in culture and | | | | | characterization of microorganisms under aseptic conditions. | |---|---------|-----|---| | | | CO3 | Apply the knowledge of microscopy to identify various microorganisms and their organelles | | | | CO4 | Analyze the role of microorganisms in environmental protection, industrial applications and infectious diseases. | | | | CO1 | Apply theoretical knowledge and execute experiments pertaining to methods of sterilization, microbial, identification and characterization. | | MICROBIOLOGY
LAB | 21BTL35 | CO2 | Apply the basic techniques of microbiology in various experiments related to agriculture, food and environment. | | LAD | | CO3 | Analyze the media requirements for the cultivation of particular microorganisms. | | | | CO4 | Compare and contrast between microbes that are beneficial and harmful to mankind by assessing the biochemical pathway. | | SOCIAL | | CO1 | Understand social responsibility | | CONNECT AND RESPONSIBILITY | 21BT36 | CO2 | Showcase planning and organizational skills | | BIO-LAB | 21BT384 | CO1 | Understanding the bio lab management requirements, risk assessment, levels of biosafety and its assessment with control measures. | | MANAGEMENT AND RISK ASSESSMENT | | CO2 | Infer on the essentials of quality management in lab, risk assessment tools, levels of bio safety levels, assessment and its minimization | | ASSESSIVIENT | | CO3 | Access on the requirements of quality management, risk assessment with case studies with biosafety levels and its mitigation | | | 21MAT41 | CO1 | Understand the concepts of Complex variables & amp;
Complex integration, Special functions, Statistical
methods and Probability distributions & amp; sampling
Theory. | | COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS | | CO2 | Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate complex integration, Special functions, Statistical methods and Probability distributions & Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate various physical phenomena using the concepts of Complex variables & Demonstrate | | | | CO3 | Apply the knowledge of Complex variables & amp; Complex integration, Special functions, Statistical methods and Probability distributions & amp; sampling theory in modelling various physical and engineering phenomena. | | | | CO4 | Relate the concepts of Complex variables & amp;
Complex integration, Special functions, Statistical
methods and Probability distributions & amp; sampling | | | | | 1 | |-------------------------------|---------|-------|--| | | | | Theory in various engineering problems related to the | | | | G C 4 | Bio-Technology and allied engineering branches. | | DAYMAYONA | | CO1 | Read and write simple Python programs. | | PYTHON | 2177742 | CO2 | Define Python functions and call them. | | PROGRAMMING +
LAB | 21BT42 | CO3 | Apply Python data structures for creating lists, tuples, and dictionaries. | | | | CO4 | Develop Python programs with conditionals and loops. | | | | CO1 | Outline the structure and functions of cellular organelles and cell cycles | | CELL BIOLOGY
&CELL CULTURE | | CO2 | Apply the concepts of cell- cell signaling, transport mechanisms and programmed and/or non-programmed cell death mechanisms in cells | | TECHNIQUES + | 21BT43 | CO3 | Categorize the exocytosis and endocytosis pathways with examples | | LAB | | CO4 | Implement plant tissue culture techniques in agriculture, food and medicine. | | | | CO5 | Analyze the principles of animal cell culture in drug and toxicity testing. | | | 21BT44 | CO1 | Summarize the concepts and importance of central dogma of molecular biology and tools of genetic engineering with focus on their applications. | | MOLECULAR
BIOLOGY | | CO2 | Sketch the mechanism of prokaryotic and eukaryotic replication, transcription and translation and mode of action of enzymes in genetic engineering | | &GENETIC
ENGINEERING | | CO3 | Correlate the genetic information flow pathway in biological systems in replication, transcription, translation, and its proteomics. | | | | CO4 | Differentiate between the physical, chemical, and biological methods of gene transfer | | | 21BT45 | CO1 | Interdisciplinary applications of biomolecules by exploiting its molecular properties. | | BIOLOGY FOR | | CO2 | Compare the working human organs to known equipment's/machineries. | | ENGINEERS | | CO3 | Relate various technologies on the principles of biomechanics. | | | | CO4 | Evaluate the design of bioengineering used in solution of contemporary problems. | | MOLECULAR
BIOLOGY | 21BTL46 | CO1 | Comprehend the basic genetic engineering and molecular biology techniques in vitro. | | | | CO2 | Conduct the experiments to isolate/quantify genetic material from the given source. 2 | | &GENETIC
ENGINEERING | | CO3 | Analyze and interpret the effects of physio-chemical factors/enzymes/ on
genetic | | LAB | | CO4 | materials/cells in vitro | | | | CO5 | Apply the skills of Isolation, identification and quantification of genetic material for genetic | | | | | engineering applications | |---------------------------|----------|-----|---| | | | | Interdisciplinary applications of Hydro/aero/aquaponics | | | | CO1 | in farming with emphasis to revenue | | | | COI | generation and entrepreneurial process | | HYDROPONICS, | | | | | AQUAPONICS | 01DT/401 | CO2 | Evaluate the requirements of traditional and innovative | | AND | 21BT481 | | farming in terms of resources | | AEROPONICS | | CO3 | Demonstrate various practices to maintain personal | | | | | hygiene, cleanliness, and safety at the workplace. | | | | CO4 | Lab-scale Design of setting up and maintaining the | | | | 001 | hydroponic system and plants/ crop | | | | CO1 | Understand oneself in a holistic way | | UNIVERSAL | | CO2 | Apply principles of happiness and harmony to one's | | HUMAN VALUES | 21UH49 | | various aspects of life | | | | CO3 | Analyse preconditionings and its effects on one's | | | | | behaviour | | | | CO1 | Demonstrate Sound technical Knowledge in the chosen | | | | | domain through Skill up gradation | | INTER/INTRA | | CO2 | Correlate the knowledge gained for different | | INSTITUTIONAL | 21INT49 | | applications scenarios | | INTERNSHIP | 2111(1.) | CO3 | Work as individual or as good team player in an | | 11 (1214 (2111 | | | organization | | | | CO4 | Communicate technical content effectively through | | | | 001 | written and oral presentations | | | | | Describe the theories of reaction rate based on | | | | CO1 | temperature dependency, rate equation by integral and | | | | | differential analysis for constant volume system | | | | | Interpret the design equation for batch, stirred and | | | | CO2 | tubular reactors in the design of parallel and series | | | | | reactors | | BIOKINETICS & | | | Interpret on enzyme and its classification; initial | | BIOREACTION | 21BT51 | CO3 | velocity studies to obtain Michelis menton equation, | | ENGINEERING | 215131 | | Lineweaver Burk and Eadie Hofstee equation | | Zi (Sii (ZZi(ii)) | | | Interpret on the kinetics of batch growth, factors | | | | CO4 | affecting the microbial growth, monod growth kinetics, | | | | | thermal death kinetics of micro organisms | | | | | Interpret on degree of reduction, yield co efficient, | | | | CO5 | media requirements and media formulation for optimal | | | | 003 | growth and product formation, batch and continuous | | | | | sterilization | | | | | Outline the molecular and cellular mechanisms involved | | | | CO1 | in the development and regulation of the immune | | IMMUNOTECHNO
LOGY+ LAB | | | response | | | 21BT52 | CO2 | Illustrate the cause, challenges and treatment for | | | | | Immune System Pathologies and Dysfunctions | | | | CO3 | Apply the major immunological laboratory techniques | | | | | and their application to both clinical analysis and | | | | | avnarimental research | |----------------------------------|---------|-----|--| | | | | experimental research | | | | CO4 | Analyze the immunological conditions, disorders and its diagnostics. | | | | CO5 | Demonstrate various Immunodiagnostic techniques like agglutination, precipitation and various Ag-Ab reaction etc | | | | CO6 | Analyse and Interpret test result of various Ag-
Abreaction | | | | CO1 | Describe the structural aspects of macromolecules like proteins, nucleic acids and bio-membranes. | | STRUCTURAL
BIOLOGY & | 21BT53 | CO2 | Demonstrate their structure function hypothesis via suitable techniques. | | ANALYTICAL
TECHNIQUES | 210133 | CO3 | Apply the specific biophysical, spectroscopic, chromatographic techniques for various case studies. | | | | CO4 | Operation and working procedure of spectroscopic and chromatographic technique | | | | CO1 | Define structural, comparative and functional genomics and its uses in various research fields | | GENOMICS, | 21BT54 | CO2 | Outline various methods and techniques of Genomics, expression profiling, and its applications. | | PROTEOMICS
AND | | CO3 | Illustrate the different proteome analysis technologies | | BIOINFORMATICS | | CO4 | Compare the various data types and databases and their applicability in bioinformatics | | | | CO5 | Analyse the methods of processing biological data to infer useful information | | | 21BTL55 | CO1 | Understand fundamental concepts of bioinformatics with classification and availability of biological databases | | BIOINFORMATICS | | CO2 | Apply online resource tools such as BLAST and access biological data from NCBI and UNIPROT | | LAB | | CO3 | Solve sequence alignment problems using EMBOSS
Needle and water for global and local alignment | | | | CO4 | Design primers for selected genome sequences to give targeted PCR products | | EXTRACTION | | CO1 | Demonstrate the techniques to select suitable herbs | | METHODS AND
HERBAL | 21BT582 | CO2 | Apply the principles of extraction to retrieve bioactive compounds. | | PRODUCTS | | CO3 | Conduct experiments to increase the yield and Analyze the activity of bioactive compounds. | | BIOBUSINESS
MANAGEMENT
AND | 21BT61 | CO1 | Distinguish between the various types of entrepreneurships and market studies | | | | CO2 | Understand the Business opportunities in Biotechnology field | | ENTREPRENEURS
HIP | | CO3 | Explore the various case studies of the biotech start ups in India. | | | | CO4 | Describe the importance of bioethics, biosafety and IPR | | | | 1 | 1 | |----------------------------------|------------------------------------|-----|---| | | | CO5 | Analyze a project report related to the proposal for obtaining funding. | | | | CO1 | Describe the classification of instrumentation used in controlling the process. | | BIOPROCESS | | CO2 | Describe the principles and working of elements in the control system | | PRINCIPLES,
CONTROL & | 21BT62 | CO3 | Solve the equations of transfer function in the determination of out put | | AUTOMATION +
LAB | | CO4 | Differentiate the equations related to the criteria of stability using Routh test, Bode diagram, and Nyquist plot in the design of control system. | | | | CO5 | Demonstrate skill in safe operation of the laboratory experiment | | | | CO1 | Define enzymes and its catalytic action, mechanism & kinetics with few examples. | | ENZYME | | CO2 | Explain the various techniques involved in the extraction and utilization of enzymes in biotransformation. | | TECHNOLOGY | 21BT63 | CO3 | Estimate the enzyme activity measuring its kinetics | | | | CO4 | Analyze suitability of various techniques for making novel enzymes for various applications | | | | CO5 | Infer the various applicability of enzymes in other industries | | | 21BT644 | CO1 | Explain the various types of stem cells in eukaryotes and ethical issues in retrieving them | | STEM CELL | | CO2 | Identify the media and factors responsible for regeneration of stem cells | | TECHNOLOGY | | CO3 | Analyze the need for stem cells in biomedical applications | | | | CO4 | Infer the biological engineering knowledge to relate to case studies | | | | CO1 | Display a solid foundation in understanding the biochemical, nutritional, physiological and safety aspect of food and their relationship with health. | | FOOD,
NUTRITION AND
HEALTH | 01DT(50 | CO2 | Articulate the balanced diet for various age and health groups. | | | 21BT652 | CO3 | Correlate causes and prevention for nutritional diseases | | | | CO4 | Demonstrate the techniques of food processing, preservation and novel food product development. | | | | CO5 | Detail the need of regulations and operations of a food industry. | | ENZYME | ENZYME
TECHNOLOGY 21BT66
LAB | CO1 | Perform experiments related to enzyme isolation and purification. | | | | CO2 | Perform experiments on different kinetic parameters and stability studies. | ## ACHARYA ## **ACHARYA INSTITUTE OF TECHNOLOGY** Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT) #### **2018 SCHEME COURSE OUTCOMES** | Course Name | Course
Code | CO. No. | Course Outcomes | |---|----------------|---------|---| | BIOSTATISTI
CS | | CO1 | Describe The Numerical Techniques, Special Functions,
Complex Variables, Probability, Sampling Theory And
Stochastic Process | | | 18BT31 | CO2 | Determine The Solutions Using Numerical Techniques,
Solve Special Functions Problems In Complex Domain;
Solve Problems On Probability, Sampling Theory And
Stochastic Process | | | | CO3 | Draw The Conclusions From Numerical Techniques,
Special Functions, Complex Variables, Probability,
Sampling Theory And Stochastic Process. | | | | CO1 | Describe Various Types Of Microbes And Their Classification | | | | CO2 | Understand The Growth , Metabolism, Mode Of Infection, Causes And Effects Of Microbes | | MICROBIOLO
GY | 18BT32 | CO3 | Analyze And Identify Various Microorganisms Through
Staining And Their Organelles | | | | CO4 | Apply The Knowledge Of Microbial Identification To
Classify The Microbes In Air, Water And Soil Into
Essential And Harmful Microbes For Medical,
Environmental And Industrial Use | | UNIT
OPERATIONS | 18BT33 | CO1 | Understand The Classification Of Fluids, Basic Equation Of Fluid Flow, Flow Measuring Devices, Crushing
Laws, Modes Of Heat Transfer And Rate Of Diffusion | | | | CO2 | Understand The Principles Fluid Mechanics,
Mechanical Operations, Modes Of Heat Transfer,
Steady-State Conduction And Convection, Working Of
Heat Transfer Exchanger And Concepts Of Mass
Transfer. | | | | CO3 | Apply The Equations Of Flow, Crushing Laws, Steady
State Equations Of Conduction And Convection In
Solving Problems | | | | CO4 | Apply The Equations Of Diffusivity And Mc Cabe Thiele's Method In Solving Problems | | INTRODUCTI
ON TO
BIOMOLECUL
ES | | CO1 | Classify Biomolecules Based On Structure, Number And Function | | | 18BT34 | CO2 | Understand The Fundamentals Of Biochemical Principles Such As Structure, Function, Organization/Stabilization Of Biomolecules | | | | CO3 | Sketch The Energy Flow Cycle/Metabolic Pathways With Energy Balance Sheet | | | | CO4 | Analyze The Transport Mechanism Across The | | Г | | | D: 1 : 1M 1 | |-------------------|----------|-------------|---| | | | | Biological Membrane | | | | | Outline The Structure And Function Of Cell Organelles, | | | | CO1 | Organs Of Heredity And Appraise Their Physiological | | | | | Roles. | | CELI | | | Appraise The Possible Origin Of Cell Organelles, | | CELL | | CO2 | Compartmentalization, Ageing Process And The | | BIOLOGY | 18BT35 | | Hereditary Molecular Components. | | AND | | | Explicit The Basics Of Mendelian Genetics And Gene | | GENETICS | | CO3 | Interactions, Their Inheritance And Expression In | | | | 000 | Nature. | | | | | Analysis Of Inherited Disorders With Pedigree Analysis | | | | CO4 | And Conceptual Numericals. | | | | CO1 | | | DYTHON | | COI | Understand Python Language With Updated Tool Usage | | PYTHON | 100000 | CO2 | Apply The Basic Concepts Of Python For Bioloogical | | PROGRAMMI | 18BT36 | | Data Handling | | NG | | CO3 | Use The Software With Special Reference To | | | | | Biotechnological Applications | | | | | Understand And Use Different Laboratory Equipment | | | _ | CO1 | And Instruments Such As Microscope, Laminar Air | | | | | Flow Station, Autoclave, Oven, Incubators. | | MICROBILOG | | CO2 | Prepare Suitable Media For The Cultivation Of The | | Y | | CO2 | Microorganisms. | | LABORATOR | 18BTL37 | | Analyze And Interpret The Role Of Microbes By | | | | CO3 | Applying The Knowledge Obtained For The Isolation, | | Y | | | Identification And Characterization Of Microorganisms | | | | | Classify/Justify The Presence Of Beneficial And | | | | CO4 | Harmful Microorganisms Based On Their Function In A | | | | | Given Habitat. | | | | CO1 | Identify The Engineering Principles Of Each Unit | | | | CO1 | Operation And Tabulate The Reading | | | | | Demonstrate The Skill And Knowledge Required For | | UNIT | | CO2 | The Safe Operation Of Laboratory Experiment For The | | OPERATION | 18BTL38 | 00 2 | Given Specification | | LABORATOR | 1021230 | | Conduct The Unit Operation Process And Obtain The | | Y | | CO3 | Parametric Values As Per The Principles | | | | | Record And Examine The Results | | | | CO4 | /Data With Interpretation | | | | | Understand Fundamentals Of The Chemical Principles | | STOICHIOME
TRY | | CO1 | Related To The Composition Of Matter And The | | | | COI | | | | | | Concept Of Molecular Identity Estimate The Debayiours Of Liquid And Coses By The | | | 1007741 | CO2 | Estimate The Behaviours Of Liquid And Gases By The | | | 18BT41 | CO2 | Relationships Between Gas Temperature, Pressure, | | | | | Amount, And Volume | | | | CO3 | Interpret The Relationships Between Chemical Changes | | | <u> </u> | | And Thermal Energy | | | | CO4 | Analyse The Substances Involved In Chemical | | | | | Reactions Quantitatively And Its Stoichiometric Conditions | |---------------------------------------|--------|-----|--| | | 18BT42 | CO1 | Gain In Depth Knowledge In The General Principles Of
Molecular Biology In Both Prokaryotic And Eukaryotic
Organisms | | MOLECULAR | | CO2 | Demonstrate An Understanding Of Various Mechanisms Of Nucleic Acids, Synthesis And Their Functions. | | MOLECULAR
BIOLOGY | | CO3 | Describe The General Principles Of Molecular Biology
And The Implications Such As Recombination, Cancer,
Transposition | | | | CO4 | Infer Information On The General Principles Of
Proteins And Its Synthesis In Both Prokaryotic And
Eukaryotic Organisms Which Will Help In Genetic
Engineering | | | | CO1 | Understand The Basic Concepts And Components Of Immune System | | IMMUNOTEC | | CO2 | Comprehend The Diversified Roles, Functions And Dysfunctions Of Immune System | | HNOLOGY | 18BT43 | CO3 | Apply Immunological Techniques/ Processes In The Field Of Medicine, Healthcare And Diagnostics | | | | CO4 | Analyze The Reasons For Graft Rejection And Auto Immune Disorders. | | | 18BT44 | CO1 | Comprehend The Characteristics Of Modified Media
For Cellular Studies | | CELL | | CO2 | Analyze The Cell Culture Conditions For A Laboratory Scale | | CULTURE
TECHNIQUES | | CO3 | Analyse/Differentiate The Process/Equipment Needed
To Culture Cells From Various Sources Like Animals,
Plants And Microbes | | | | CO4 | Apply The Techniques Of Tissue/Cell Culture To Retrieve Commercially Viable Products | | | 18BT45 | CO1 | Describe The Terminologies Of Thermodynamics,
Concept Of Heat, Work | | BIOCHEMICA
L
THERMODYN
AMICS | | CO2 | Understand The Laws Of Thermodynamics, Entropy, Ideal And Real Gases, Properties Of Pure Substances And Biochemical Reaction Equilibrium | | | | CO3 | Apply The Laws Of Thermodynamics, Equation Of State, Gibbs- Duhem Equation, Maxwell Equation To Identify The System Conditions | | | | CO4 | Analyze The Importance Of Thermodynamics For Reversible And Irreversible Systems, Molar Properties Of The Solutions. | | CLINICAL
BIOCHEMIST
RY | 18BT46 | CO1 | Explain The Acid-Base Balance And The Regulatory
Mechanisms Within The Body To Include The Analyte,
Physiology Involved, And Clinical Significance | | | | CO2 | Compare And Contrast The Basic Differences Between Abnormalities Associated Metabolism With Biomolecules. | |---|---------|-----|--| | | | CO3 | Apply The Theoretical Concepts In Biochemistry With A Focus On, Hormones And Biosignaling, Metabolism And Clinical Biochemistry. | | | | CO4 | Analyze And Interpret The Data From Case Scenarios. | | BIOCHEMIST | | CO1 | Demonstrate The Basic Laboratory Mathematics
Necessary To Perform Tests, Make Dilutions, And
Prepare Buffer Solutions. | | RY
LABORATOR
Y | 18BTL47 | CO2 | Demonstrate The Basic Chemistry And Biochemistry
Application In The Field Of Medical Diagnosis,
Treatment And Management. | | | | CO3 | Compare/Contrast Qualitative And Quantitative Analysis Of Various Biomolecules. | | IMMUNOTEC
HNOLOGY | 18BTL48 | CO1 | Understand Various Theoretical Concepts Of Immunodiagnostic Techniques And Genetic Engineering Techniques | | LABORATOR
Y | | CO2 | Apply The Immunodiagnostic Techniques And Genetic Engineering Techniques | | | | CO3 | Analyse And Infer The Experimental Outcome | | BIO- | 18BT51 | CO1 | Understand The Business Opportunities In Biotechnology Field | | BUISINESS
AND | | CO2 | Describe The Importance Of Bioethics, Biosafety And IPR | | INTREPRENE
URSHIP | | CO3 | Apply Concepts Of Project Management To Write Project Proposals And Project Reports. | | OKSIII | | CO4 | Analyze A Project Report Related To The Proposal For Obtaining Funding | | | 18BT52 | CO1 | Identify The Reaction Order And Specific Reaction Rate From Theoretical Data. | | CHEMICAL
REACTION | | CO2 | Compare The Performance Of Ideal And Non-Ideal Reactors Using E- And F-Curves | | ENGINEERIN
G | | CO3 | Determine Internal And Overall Effectiveness Factors
For The Order Reactions | | | | CO4 | Analyse Kinetics Of Biochemical Reactions Carried Out
In Reactor | | ENZYME
TECHNOLOG
Y AND
BIOTRANSFO
RMATION | 18BT53 | CO1 | Able To Design Novel Enzymes Using Design
Templates & Improve The Existing Methods Of
Enzyme Immobilization | | | | CO2 | Evaluate The Different Strategies Used In Purification,
Characterization Of Enzymes & Enzyme- Catalyzed
Reactions | | | | CO3 | Examine Kinetics Of Enzyme- Catalyzed Reactions & Their Applications In Various Industries | | | | CO4 | Develop Ways In Improving The Sensitivity Of Enzyme | | Т | <u> </u> | | I D D D D D D D D D D D D D D D D D D D | |--|----------|-----|--| | | | | Assays In Disease Diagnosis Wrt Cancer & Therapy | | | | CO5 | Explain The Various Types Of Enzyme Purification
Techniques, Mechanism Of Enzyme Catalyzed
Reactions & Applications Of Industrially Important
Enzymes | | | 18BT54 | CO1 | Define Structural, Comparative And Functional
Genomics And Proteomics And Its Uses In Various
Research Fields | | GENOMICS
AND | | CO2 | Outline Various Methods And Techniques Of
Genomics, Expression Profiling, Proteome Analysis,
And Its Applications | | PROTEOMICS | | CO3 | Illustrate The Different High Throughput DNA Sequencing Technologies | | | | CO4 | Apply Various Tools Of Analysis For Proteome Expression | | | | CO1 | Understand About The Different Pre-Treatment Steps
Involved In Bioproduct Analysis, Methods Of
Analytical Techniques. | | BIOANALYTI | 18BT55 | CO2 | Understand The Working Of Bioanalytical Instruments Used In The Biomolecular
Analysis | | CAL
TECHNIQUES | | CO3 | Predict The Chromatographic, Electrophoretic
Techniques For Identification And Quantification Of
Bioanalytical Product | | | | CO4 | Analyze The Macromolecular Structure By NMR, X-Ray Diffraction Methods And Electrochemical Characterization Techniques | | | 18BTL57 | CO1 | State And Define The Nature Of The Reaction, Rate Of The Reaction, Rate Constant And Enzyme Activity. | | BIOKINETICS
AND ENZYME
TECHNOLOG | | CO2 | To Understand The Mechanism Of Enzyme Action,
Purification Of Enzymes, Catalytic Action Of Enzymes,
Kinetics Of Enzyme Catalyzed Reactions | | Y
LABORATOR
Y | | CO3 | To Determine The Optimum Ph, Temperature And Concentration Of An Enzyme's Catalytic Power, Its Substrate Affinity And Inhibitor Role | | | | CO4 | Compose The Reaction Data To Identify The Standard Parameter For Efficient Functioning Of Enzymes | | GENETIC
ENGINEERIN
G AND CELL
CULTURE
LABORATOR
Y | 18BTL58 | CO1 | Comprehend The Basic Genetic Engineering And Cell Culture Techniques In Vitro. | | | | CO2 | Conduct The Experiments To Quantify Genetic Material And Secondary Metabolites From The Given Source. | | | | CO3 | Analyze And Interpret The Effects Of Physio-Chemical Factors, Growth Hormones On Development Of Cell Cultures In Vitro | | | | CO4 | Apply The Skills Of Isolation, Identification And Quantification Of Genetic Material For Genetic Engineering Applications | | ENVIRONME
NTAL
STUDIES | 18CIV59 | CO1 | Understand The Environmental Science In Context Of Engineering | |------------------------------------|---------|-----|--| | | | CO2 | Analyse Contemporary Environmental Problems In The Modern Era | | PROCESS | 18BT61 | CO1 | Identify Suitable Process Instrumentation For Monitoring And Control Of Bioreactors | | CONTROL
AND | | CO2 | Determine The Performance Of A Closed Loop Control
Approach | | AUTOMATIO
N | 102101 | CO3 | Analyse Process Stability, Dynamic Responses,
Frequency Analysis Of Biochemical Processes | | 1, | | CO4 | Develop Mathematical Models For Dynamic Processes | | | | CO1 | Understand The Working Of Process Equipment Double Pipe Heat Exchanger, Shell & Tube Heat Exchanger, Condenser, Fermentor, Packed Column Distillation | | BIOPROCESS
EQUIPMENT | 18BT62 | CO2 | Apply The Material Balance , Heat Transfer Co-
Efficient Equations For The Design Of Heat Transfer
Equipments | | DESIGN AND
CAED | | CO3 | Analyze The Heat Transfer Calculations Based On The
Relationship Between Dimensionless Groups & VLE
Data For The Process Equipments | | | | CO4 | Evaluate The Pressure Drop Calculations For The Heat Exchangers, Condenser, Fermentor, Height And Diameter Of Packed Bed Distillation Column | | | 18BT63 | CO1 | Define Biological Data Bases, Its Types And Its Uses In Various Research Fields | | BIOINFORMA
TICS | | CO2 | Describe Various Methods And Techniques Of
Bioinformatics Tools To Search Nucleotides And
Amino Acid Sequences And Its Alignment And
Arrangement Into Primers And Restriction Maps And
Model Small Molecules And Peptide Chains. | | | | CO3 | Analyze The Best Method To Predict The Functional Aspects Of A Genome And Structure Of A Protein. | | | | CO4 | Utilize Various Bioinformatics Tools Required To Handle Biological Data | | FOOD
PROCESS
ENGINEERIN
G | 18BT64X | CO1 | Display A Solid Foundation In Understanding The
Biochemical, Nutritional, Physiological, Ethical And
Safety Aspect Of Food | | | | CO2 | Articulate The Different Factors Influencing Microbial Growth, Its Intoxication And Diagnostic System Used In Food Industry To Detect The Microbial Spoilage. | | | | CO3 | Appraise The Different Processing, Fermenting, Preserving Techniques To Enhance The Shelf Life Of Food By Using Biotechnological Approach. | | | | CO4 | Analyse The Food Sample For Nutritional Content And Diagnose It For Various Microbial Contamination. | | BIOLOGY | 18BT65X | CO1 | Display A Solid Foundation In Understanding The Cell | | FOR | | | D' 1 | |--|----------|-----|---| | FOR | | | Biology And Biomolecules | | ENGINEERS | | CO2 | Articulate The Factors Influencing Biomolecules And Biomaterials. | | | | CO3 | Apply The Knowledge To Relate Organs To An Engineered Device. | | | | CO4 | To Analyze Various Physio-Chemical Factors Affecting
Biomolecules When Subjected To Any Physical And | | | | | Chemical Change. | | PROCESS | | CO1 | Identify The Principle Of Experimental Study And Tabulate The Reading | | CONTROL
AMD
AUTOMATIO | 18BT66 | CO2 | Demonstrate The Skill And Knowledge Required For
The Safe Operation Of Laboratory Experiment For The
Given Specification | | N
LABORATOR | | CO3 | Conduct The Experimental Study And Obtain The Parametric Values As Per The Principles | | Y | | CO4 | Record And Examine The Results / Data With Interpretation | | BIOINFORMA | | CO1 | Understand Fundamental Concepts Of Bioinformatics | | TICS | 10DT/7 | CO2 | Apply Online Resource Tools | | LABORATOR | 18BT67 | CO3 | Solve Sequence Alignment Problems | | Y | | CO4 | Design Primers And Peptide Sequences | | | 18BTMP68 | CO1 | Identify The Research Problem And Frame Objectives
Based On The Review Of Literature | | MINIPROJECT | | CO2 | Apply Relevant Methodologies For Addressing Afore Mentioned Objectives. | | | | CO3 | Analyze And Evaluate The Experimental Results And Propose Suitable Modifications To Achieve Expected Outcomes. | | | 18BT71 | CO1 | Discuss The Control Strategy For A Process Involving Multiple Variables And Constraints | | BIOPROCESS | | CO2 | Describe The Main Stages Of Downstream Processing Operations | | ENGINEERIN
G | | CO3 | Relate The Separation Techniques Based On The Characteristics Of The Biomolecules | | | | CO4 | Distinguish The Different Types Of Chromatography
Techniques For Purifying Proteins | | CLINICAL
AND
PHARMACEU
TICAL
BIOTECHNOL
OGY | 18BT72 | CO1 | Understand The Basic Concepts Of Drug Discovery Cycle, Formulations Along With Pharmacokinetics And Pharmacodynamics Studies. | | | | CO2 | Comprehend The Proficiency Of Clinical Research In Industry/Research For Obtaining And Improving The Quality Of Natural/Biopharmaceutical Products. | | | | CO3 | Implement The Clinical Significance And Therapeutic Aspects Of Drugs, Proteins And Enzymes. | | | | CO4 | Analyze The Case Studies Related To Pharmacotherapy And Biotherapeutics. | | PROCESS
EQUIPMENT | 18BT73X | CO1 | Explain The Steps Involved In The Process Design,
General Design Considerations, And Different Costs. | |------------------------------------|---------|-----|---| | | | CO2 | Describe The Feasibility Of Capital Investment For The
Process Development, Depreciation Costs For Taxes,
Profitability, Financial Statements, And Reports Based
On Cash Flow Diagrams | | AND PLANT
DESIGN | | CO3 | Determine Capital Investment Based On Different Types Of Costs, Depreciation, And Taxes For The Cost Equivalence. | | | | CO4 | Distinguish The Types Of Capital Investment, Factors
Affecting Total Product Costs, And Profitability Of The
Process | | | | CO1 | Demonstrate An Understanding Of The Clinical Need For Stem Cell Therapy And Tissue Engineering In Regenerative Medicine. | | TISSUE | 18BT74X | CO2 | Apply The Principles Of Cellular And Tissue Engineering To Theoretically Develop Processes For The Production Of Biologics And Tissue Engineered Medical Devices. | | ENGINEERIN
G | | CO3 | Analyze And Describe The Interactions Of Biomaterials With The Biological Environment – Stability, Corrosion, Histo-Cyto- And Hemo-Compatability; Explain How These Interactions Are Assessed And Influenced By Material Choice And Modification. | | | | CO4 | Compare And Evaluate Scientific Literature To Inform Design Of Biologics And Tissue Engineered Medical Devices. | | BIOTECHNOL
OGY FOR | 18BT75X | CO1 | Understand The Source Of The Pollution, The Source
And Reasons For The Causes Of Pollution. Outline The
Techniques Used For Treating And Filtering Water To
Make It Portable. Gain Knowledge On Biofuels And
Understand The Importance Of Biofuels Over
Conservative Fuels | | SUSTAINABL
E
ENVIRONME
NT | | CO2 | Apply The Knowledge To Choose The Right
Biotechnological Process To Provide A Sustainable
Environment | | | | CO3 | Analyze And Suggest Water Treatment And Solid Waste Management Methods, The Characteristics Of Wastewater/ Solid Waste Samples And Various Filtration Techniques | | | | CO4 | Interpret The Importance Of Biofuels And Methods To Conserve Fuels. | | BIOPROCESS
ENGINEERIN
G | 18BTL76 | CO1 | List And Describe The Basic Requirements Of
Downstream Processing For Biochemical Product
Recovery | | LABORATOR | | CO2 | Apply The Techniques Of Separation And Isolation Of | | *** | | | W : D:1 : 10 | |----------------------------|---------|-----|--| | Y | | | Various Biological Compounds From Tissue Sources. | | | | CO3 | Illustrate The Emerging Technologies That Would
Benefit The Biochemical Product Recovery And Show
The Likely Benefits It
Would Have Over The
Traditional Operations | | | | CO4 | Analyze And Interpret The Effects Of Enzyme Catalysts In Bioprocess Experimanets | | | | CO1 | Identify A Research Problem And Frame Objectives
Based On The Review Of Literature | | PROJECT | | CO2 | Apply Relevant Methodologies For Addressing Afore Mentioned Objectives. | | WORK PHASE
-1 | 18BTP77 | CO3 | Analyze And Evaluate The Experimental Results And Propose Suitable Modifications To Achieve Expected Outcomes. | | | | CO4 | To Develop Team Building Capability And Communicate Effectively To Scientific Community. | | | | CO1 | Understand Existing Regulations To Ensure Quality On The BT Industry And The Ethical Implications | | REGULATOR
Y AFFAIRS IN | 18BT81 | CO2 | Apply Validation Tools To Various Processes Of The BT Industry | | BIOTECH
INDUSTRY | | CO3 | Analyze Risk And Conformity In Various Processes Of
The BT Industry | | | | CO4 | Implement Quality Management System For BT Industry | | | 18BT821 | CO1 | Enumerate The Effects, Impacts And The Regulation Pertaining To Environmental Issues. | | ENVIRONME
NTAL | | CO2 | Illustrate The Effect Of Microorganisms Involved In The Betterment Of Environmental Issues And Other Applications. | | BIOTECHNOL
OGY | | CO3 | Analyze The Various Processes Of Pollutions And Its Impact On Natural Resources. | | | | CO4 | Appraise Case-Studies Representative Of Key Areas Of
Environmental Biotechnology And Draw Appropriate
Conclusions | | | | CO1 | Identify The Research Problem | | PROJECT
WORK
PHASE-2 | 18BTP83 | CO2 | Frame Objectives Based On The Review Of Literature | | | | CO3 | Apply Relevant Methodologies For Addressing Afore Mentioned Objectives. | | | | CO4 | Analyze And Evaluate The Experimental Results And Propose Suitable Modifications To Achieve Expected Outcomes. | | | | CO5 | To Develop Team Building Capability And Communicate Effectively To Scientific Community. | | TECHNICAL
SEMINAR | 18BTS84 | CO1 | Select Recent Advances In A Specific Field By
Performing A Comprehensive Literature Survey. | | | | CO2 | Identify The Problem, Compare The Different Solution | | | | | Methods For The Same. | |------------|---------|-----|---| | | | CO3 | Discuss The Development Of Methodology, Impact On | | | | CO3 | Society, And Future Scope. | | | | CO4 | Communicate Technical Content Effectively Through | | | | CO4 | Written And Oral Presentations. | | | 18BTI85 | CO1 | Demonstrate Sound Technical Knowledge In The | | | | | Chosen Domain Through Skill Up Gradation. | | | | CO2 | Correlate The Knowledge Gained For Different | | INTERNSHIP | | | Applications Scenarios. | | | | CO3 | Work As Individual Or As Good Team Player In An | | | | | Organization. | | | | CO4 | Communicate Technical Content Effectively Through | | | | | Written And Oral Presentations. |